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Abstract--In both heat and mass transfer, situations arise in which an entity considered as a source/sink has 
strength which can only be expressed in terms of an unknown rate of source-flow field transfer. This occurs 
when transfer between the source and medium is driven by a dependent variable difference which is unknown. 
because the responding medium value is unknown. Manifold mathematical complexities arise when in 
addition the source is highly concentrated spatially, relative to the size of the overall domain. A l-dim. 
convective-diffusive transport equation suitable for this case may be solved by simultaneous use of the 
Fourier transform and its inverse in the same equation, together with other transformation and 
manipulation. From the solution obtained for the case of constant source intensity, one may construct a 
general expression for the solution when source intensity varies arbitrarily in time. Explicit expressions are 

obtained for solution of the fundamental case of temporally sinusoidal source intensity. 

NOMENCLATURE * 

amplitude, equation (36); 
see equation (B.l); 
see equation (A.8); 
complex constant, equation (40f; 
concentration ; 
initial concentration ; 
reference concentration ; 
see equation (B.l); 
see equation (B.1); 
diffusion coeficicnt ; 
any appropriate function, equations (17); 
see equation (A.3); 
B solution for unit value of 0,; 
see equation (A.2); 
J(-I); 
set of complex constants, see Appendix B ; 
Laplace transform with respect to r; 
source strength ; 
non-dimensional source strength, equation 

(7); 
real part of; 
source transfer coefficient ; 
Laplace transform variable ; 
time ; 
flow rate; 
position. 

Greek symbols 

/X Fourier transform variable, equation (17); 

* Dummy variables of integration are written in the text as 
primed quantities. In general, they correspond to non- 
primed, non-dummy quantities represented by the same 
letter. 

s, 
c, 

vl, 

Dirac delta function ; 
one-half the length of a steady-state control 
volume, see Fig. 2; 
non-dimensional space variable, equation 
(lOa); 
dimensionless dependent variables; 
Iii value of source (source intensity); 
steady-state value of 8; 
Laplace transform of Cp; 
nondimensional time, equation (lob); 
see equation (14); 
see equation (A.21); 
Fourier transform of @‘; 
see equation (A.13); 
circular frequency, equation (36). 

1. INTRODUCTION 

A GENERAL i-dim. transport equatjon,ap~Iicable when 
sources and sinks are present is 

(1) 

Here V and D are considered to be specified constants, 
and Q is the source strength. The dependent variable 0, 
can represent temperature, concentration of a solute, 
or any other quantity for which such a transport 
equation is appropriate. 

A great deal of effort has been devoted to the 
solution of this equation and its cousins under various 
initial and boundary conditions. Source effects may be 
ofparticular interest or difficulty, whether arising from 
phase change, deposition [l], reaction [Z], adsorption 
[3], external lateral transfer [4], radioactive decay [S] 
or some other mechanism. Whether source type 
activity may be represented logically through boun- 
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dary conditions or not depends on the particular case. 
Frequently a combination of source/sink effects oc- 
curs, as in the cases of superposed equilibrium and 
kinetic adsorption [3], point injection of particulates 
which also precipitate throughout the domain [6], or 
transport of a chemical through a sorbing medium in 
which there is also lateral, intra-aggregate diffusion 

[71. 
In some practical situations, the strength of the 

source is proportional to the difference between the 
value of 0 in the flowing medium and the value of 0 
associated with the source. That is 

Q = S (O.,, - O), 

where O,,, is the source intensity. 

(2) 

A relation such as equation (2) might apply for 
example to solute transfer from a deposit in a stream or 
fluid-bearing porous medium. If 0 corresponds to 

temperature. then S is proportional to the heat transfer 
coefficient between the medium and the source. and 
(0,. ~ 0) is the temperature difference which drives 
exchange with the source. 

Schneider [8], for example, uses similar repre- 
sentation of Q to describe heat transfer to the solidified 
layer on a cold wall past which liquid flows. In his 
analysis, growth of the solidified layer is transient, but 
the first and third terms in equation (1) are neglected. 

Crank [9] reviews many applications of such a source 
representation in (1). with no convection, and Mik- 

hailov and iizisik [IO] develop a generalized method 

of analysis which they apply to some of the same 
problems. 

In situations where the flow field is macroscopically 
uniform. use of a simple l-dim. description such as 
equations (1) and (2) may obviously be warranted. 
While the details of flow through a sorbing or react- 
ing porous medium are extremely complex and multi- 
dimensional at the microscopic level, macroscopically 
the flow field may be uniform and the matrix-fluid 
transfer may well be summed up in the form (2). Such a 
simple formulation may also be desirable if one is to 
avoid quite formidable flow and transfer problems 
within larger. constructed devices, as in the case of 
transfer to or from a bank of tubes in a cross flow. Use 
of a system such as (1). (2) gains additional cogency if 
the flow field is much larger in the longitudinal than 
transverse directions. The system also appeals when 

the source is quite concentrated spatially relative to the 
overall domain (illustrated in Fig. 1) so that its inter- 
nals are not to be analyzed, while one focuses more on 
the effects of its transfer with the larger domain. 

Equations along the lines of(l), (2) may make sense 
in connection with complex internal flow transfer 

where one wishes to retain diffusive, convective and 
lateral influx mechanisms, and some geometrical sim- 
plicity cooperates in a rational system of one- 
dimensionalization. We may consider, for example, the 

problem of Faghri and Welty [1 11, entailing axial flow 
in a uniform pipe, with conduction, convection and 
circumferentially varying surface heat flux. With axial. 
circumferential, and radial variation, the physical 
problem is 3-dimensional. In many practical situ- 
ations, it is not feasible to observe or analyze 

relevant quantities in such detail, while cross- 
sectionally integrated velocity, temperature. or lateral 
heat tlux are more tractable. iizisik and Mulligan [12], 
for example, consider a physically related problem in 
which freezing occurs on the pipe wall. In addition to 
simplifying matters by neglecting the conduction term, 
they retain radial conduction but assume slug flow in 
the liquid. This facilitates a Hankel transform of the 
governing equation with respect to the radial coor- 
dinate, which leaves a system like (I), (2) with D and fj,, 
equal to zero. Considering flow of a solute in a tube, 
Aris [I 31 succeeds in casting the problem into l- 
dimension, using cross-sectional average velocity and 
concentration, with a rational accounting for radial 
variation and interactions through a specific addition 
to the diffusion coefficient. Usually when averaging 
procedures are applied to obtain equations like (l), 
dispersion type terms are produced at the scale of the 
averaged quantities which are more difficult to specify 
u priori (e.g. see [14, 151). Thus one of the uses of 
analytical solutions such as that below is to provide a 
means of inferring unknown parameter values from 
large scale behavior of a dependent variable. Cross- 
sectional averaging of the governing equations used by 
Faghri and Welty [ 111, if done appropriately, would 
produce an equation such as (1) with detailed multi- 
dimensional interactions buried in Q (or S). 

A moving heat source may also produce equations 
along the lines of (1 ), (2) if one proceeds in a coordinate 
system attached to the source itself. Ling and Yang 
[ 161 solve for the temperature distribution in a semi- 

Stream 

I 
Source 

I 
x=0 

FIG;. 1. Schematic representation of transfer between a highly concentrated source and a flow field 



One-dimensional transport from a highly concentrated, transfer type source 29 

infinite solid, in contact with a moving, spatially evaluated. In addition to their predictive value when 
concentrated heat source. in the frame attached to the system parameters are known, these solutions provide 
source, both convection and conduction appear in the a means of estimating those parameters when de- 
solid. Their equations pertain to a steady-state in the pendent variable data is at hand instead. Relations of 
moving frame, and correspond to the set above for a the form (2) usually constitute idealizations of 
very thin solid, with the incident flux expressed as in source-medium transfer in any practical situation. 
(2), with S non-zero only over a limited domain. While one may retrieve some real world complexity 
Analyzing l-dim. ablation of a semi-infinite solid, through arbitrarily complex forms of S’, we are in- 
Landau [17] transforms to a coordinate system in terested here in an analytical solution, and will there- 
which the phase change location is fixed, a technique fore assume a mathematically beneficent physical si- 
found useful by many subsequent investigators (e.g. see tuation, in which the assumption of constant S, P’ and 
Ferriss [18], and Lynch and O’Neill[19]). In Landau’s D is acceptable. The results obtained under this 
method a convection term is added by the coordinate assumption furnish qualitative indications of system 
motion, so that an equation in the general form of (1) response, may frequently be valid at least as a first 
results. If the phase change is included as a source, then approximation, and may be sufficient for engineering 
the source is entirely concentrated at the surface point. and design purposes. Numerical procedures designed 
For convective transfer on the surface, (2) contains an S for more general situations of the same ilk may be 
concentrated infinitely. tested against these results, and it is hoped that the 

In this paper, transient, l-dim. convective-diffusive mathematical methods and manipulations enlisted 
transport from a highly concentrated source is treated. may prove useful in attacking related problems. 
The source is considered to be negligible in extent, 
relative to the overall domain. When equation (2) is 
modified appropriately, and substituted into (l), one 2. THE STEADY STATE 

obtains the governing equation to be solved below: Figure 2 shows schematically a steady state, ap- 
proached at some time sufficiently long after the initial 
conditions applied. One may obtain a steady-state 

value of 0 by integrating over a su~ciently large 
subject to control volume containing the source, and thus 

lim tf = 0, 
balancing inflow, outflow, and source infusion of 8. As 

x-*, (4) used here and in what follows, the term “steady-state” 

B(x, 0) = 0 
means a local steady state, that is, an asymptotically 
approached constant distribution of 0 about any finite 

where 6(x) is the Dirac delta function. Figure I 
point in space. Of course, if one proceeds further 

illustrates the situation schematically. We assume that 
downstream, eventually he will encounter a zone in 

B may always be chosen such that the initial and 
which 0 is still changing, and beyond that a zone where 

boundary conditions may be expressed as in (4), and 
the source influence is negligible. The volume shown in 

that B is non-dimensional. If solute transport is 
Fig. 2 extends upstream beyond significant source 

contemplated. 0 could be 
influence, but not so far downstream so that the zone of 
active change is reached. If one assumes that the steady 

(5) 
state exists as depicted, then the steady-state (maxi- 
mum) value of 0 is 

where C, is a constant, initial concentration, and Cref is 
some reference concentration, for example a con- 

centration characteristic of the source. For heat trans- 
@, cqt), 

4+1 
fer, temperature is simply substituted for concen- 
tration in (5). where 

In what follows, the system (3), (4) is solved analyti- 
cally for both constant and time-dependent 8,,. This is 
accomplished primarily by the application of trans- 
form techniques, for the solution of both differential Thus 4 is essentially a non-dimensional source 
and integral equations along the way. The essential strength. When S is high relative to I’, this effective 

mathematical problem in this approach is caused by source strength is high and 
the presence of the delta function multiplied times 8. 
The reader obtains access to all concepts and pro- 

q >> 1 
(8) 

cedures used to treat this problem, either by direct 0 i ,ze8, . 
inclusion of detail in the text, in references, or in the For a relatively low source transfer coefficient 
appendices. 

All solutions arrive in closed form, with transient 
terms containing error functions which can easily be 
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-E I E -x 
x=0 

FIG. 2. Control volume, over which the governing equation is integrated to obtain steady-state information. 
It is assumed that the solution curve is sufficiently flat both up and downstream of the source so that diffusion 

across the volume boundaries is negligible. 

Figure 3 shows (0, /S,5,) as a function of 4. The figure 
illustrates the information in equations (8)and (9), and 

shows how the zone of a maximum influence of q lies 
between values of about 0.1 and 10. Given f3,, and an 

observed 8, in some situation, one could evaluate q 
from the above expressions. From q one could also 
evaluate S or I/, knowing one of them. 

One may question the validity of 0, as obtained 
above, both in general, and for any given point in space 
and time. More rigorous derivation of the steady-state 
expression (6) comes through the complete solution for 
Q over time and space, as presented next. 

3. COMPLETE SOLUTION, CONSTANT 0,, 

Most coefficients can be eliminated from equation 

(3) by the following transformations : 

x v 

‘l’0’ 
(104 

Pt 
TE-. 

D 
(lob) 

When the relation 

(11) 

[implied by the coordinate transformation (loa)], and 
the definition of q in (7) are used along with (lob), 
equation (3) becomes 

a0 a0 a20 
z + & - p + 4~(v)(O-O,,) = 0 (12) 

subject to 

lim 0 = 0, 
,i’i I 

(13) 
O(Q 0) = 0. 

Linear systems such as (12), (13) are often amenable 

to treatment by integral transform techniques if the 
aO/an term is removed. This can be accomplished by 
the transformation [20, pp. 52665271 

&II, r) = &I, r) exp( - r1/2 + r/4). 

Using (14) in (12), (13) one obtains 

(14) 

g - $ + q6(rl)[~-O,,exp(-~/2+7/4)1 = 0, 

(15) 

I .o I ’ 1’1’1’ 

0.6 - 

en 
Kc 

0.4 - 

FIG. 3. Steady-state dependent variable value over source intensity, as a function of y. The range of greatest 
influence of y is evidently between approx. 0.1 and 10. 
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lim 6, = 0, (164 
>,- t * 

$(% 0) = 0. (16b) 

One may now use the first part of the integral Fourier 
transform pair 

7 F(p) 5 
i 

exp(~~~) WI de 
.-I 

(17a) 

(17b) 

to reduce (15) to a differential equation in t : 

i’$ 
x + P2d; + qw, 5) - q@,,expW4) = 0, (18) 

where d; is the Fourier transform of 4, 

cb = cp(B, r). (19) 

The boundary conditions (16a) at g-+ i: x have 
been applied in the course of the transform in- 
te~rations. Also, the condition (16a) was considered to 
express the fact that, for sufficiently large values of 1~ 1, 
4 is essentially undisturbed relative to the initial 
condition, and hence its gradient is zero. 

The initial condition (16b) on 4 is transformed to 

&; (P, 0) = 0. (20) 

The term q#(O, T) appears because, by the nature of the 
delta function, 

The system (18), (20) may be solved for 4 by 
elementary methods, and the result is 

d;(fi* 7) = - Y eXp( - 0” T) [‘exp(f12 <) qi(0, i) di 
Jo 

+ ai [exp(t/4) -exP(-pZ “I. 

At this point the crux of the problem is apparent. 
Because the delta function operates against the de- 
pendent variable itself, application of any integral 
transform leaves an equation containing both un- 
transformed [&O, r)] as well as transformed [(d;)] 
descendents. The cure for this problem lies in the 
reexpression of &O, T) in terms of 4, using (17b) as 
detailed below. 

Equation (I 7b) implies 

&O, T) = L 2x 
s 

I &BY r)exp(-&)db (23) 
I 

q=o 

that is, 

Introduction of (24) into (22) produces an equation 
in 4 only, containing two integrals: 

+ $!= [exp(t/4) - exp( - /PT)]* 

-4 + P2 
(25) 

This equation may be solved for 8, via 4, via 4, via 
an additional transform and the ingenuities detailed in 
Appendix A. The result is 

q20, exp[(q + 1 k/2 + k2 - 1 h/41 
= --.---- t_q2 ~~- 

Using a series expression for erfc(z) in the first two 
terms [21], one may easily see that they go to zero as P) 
increases, at any given point in time. The last two terms 
combine in the form of 

~[l - ferfc(l)]. 

As g increases, z(q) goes to negative infinity, and this 
expression goes to zero as well. Thus the solution 
behaves in accordance with the assumed far-field 
condition. Examining the specific expressions involved 
in (26), one also sees that, as t increases, ever greater 
values of r~ must be reached before a zero value for f3 is 
approached. In other words, as time proceeds. the 
influence of the source is felt further downstream. 

The last term on the right in (26) represents the 
steady-state value of 8, in the form prophesied. Denot- 
ing that term as in (6), one may rewrite (26) in a 
somewhat simplified form, in which Q,, does not 
appear explicitly : 
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(;l=e;) exp[(y + 1 I??/2 + (y2 - 1 )t/4] 

x erfc[(q/Z)Jz + (fT!2)/Jr] 

+ pf+l)expo?) --1 
---------erfc - 

2(4-l) / 
Jz + (q/Z);Jr 

2-+ 1 

- kerfc 

/ 

1 17 - (qi2)/tlT 
2V 1 

+ 1, qfl. (27) 

For all values of q and B,,,, {fIBI, ) ranges from zero 
initially to 1, as time increases. 

For the very special case when q = 1, one may still 
obtain a solution from (27) by using l’flicipital’s rule, 

taking the limit as c( approaches 1. The result is 

5. TIME-DEPENDENT SOURCE II\ITENSITY 

Equation (12) may be written 

In this form it is clear that the operator on the left is 
linear in fl, and solutions ~orrespondill~ to various 
forcing functions on the right may he superposed. If at 

first n,,(z) is constant at O,yC(0), then the corresponding 
solution will be 

ci = O,,(O) H(i& 5), (30) 

where N(g, T) is the solution obtained from (26) for U,, 
heid constant at unity. If at some subsequent time rl 

the value of B,, is changed by A~~&,), then the 
corresponding solution will be 

J’ 0 

i i 
.._- 
.(I, 

= exp(uy) ;‘d ‘: eXp{ - [(l,/2) 4~ t- (qi2)/J’r]‘) 
n 0 =U,,(O) N(vl. T)+ AO,,(z, ) WI, 5 -711, (31) 

Y 1 

- :(l+if-i~)erfc 
i 

tJi+(q/2)/\r 
11 

t > z,. 

In a similar manner one may construct a solution 

valid after a succession of tr arbitrary step changes in 

- i erfc 
I 

t \j’z - (rl!2):Jr 
/ 

U,,, by employing !I concatenated superpositions: . 127aj 
& 

The general result (26) was tested against a numeri- 
0 = fk,(O) H(rl, T) + i W,(Q) WV> T-G). (32) 

k=, 
cal solution of the system (12). (13), using Hermitian 
finite etements in space and finite differences in time 

Z > T,. 

[22]. Although there are slight oscillations in the Or, in the same spirit one may employ a convolution 
numerical solution due to the steepness of the curve integral generalization of (32), suitable for continuous 
upstream of the source point (see Fig. 4), the very good as well as step varying OIC: 
agreement between the two sol~itions reinforces one’s 
faith in the validity of (26). 11 = @,,(o) ff(ff, T) + 

ilr iio,, 

I 
7; ffh r-i)d<. (33) 

4. THE SOURCE VICINITY, CONSTANT (I,, * 0 

Equation (27) is readily simplified to express the 
In some cases a change of variable may be more 

solution in the vicinity of the source, that is, for ~1 = 0: 
convenient. 

“r 
q exp(y’ - 1 )r/4 0 = N,(O) H(& T) - 

! 

?O,,(z - f) 
-T--- H(r;, i)di, (34) 

,0 / 

+ iE$ - Ijerfc[iJx]+ 1. (28) 
or, integrating by parts, one may use 

“T i ” 

This equation provides curves showing the rising time 0 = N,,(T- T) - N(q, 4) dli. 

of ((I,#, ) around the source, as a function of 4. -0 cli 
(35) 

0.10 

FIG. 4. Dependent variable profiles over space, at successive times. for a particular test case. Point values are 
numerical, solid lines analytical solutions. The dashed line shows the steady-state. 
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The last of these alternatives is simplest in general 
form, especially if BX is a relatively simple function. 

The derivative in the integrand also eliminates error 
functions there, leaving exponentials and powers of T. 
At the same time, the arguments of the exponentials 
are complicated, and in any given case integration of 
their products with O,,(r-Z) and various fractional 
powers of T may be quite unappetizing. In what 
follows, the evident feasibility of evaluating the integ- 

ral in (34) recommended its use instead. 

6. SINUSOIDAL SOURCE INTENSITY 

The obvious particular B,,(T) to pursue is a sinusoid 
of arbitrary amplitude and frequency. Among other 
things, from that result, combined with the result for a 

constant 8,,, one may construct the solution for an 
arbitrary Q,,(T) by using its Fourier series. To this end, 
we consider 

e,,(T) = A Sin QT. (36) 

In what follows, it is convenient to write 

;&(T-i) = - R e w A exp[io(T - +)I, (37) 

so that from (34), 

pr 

H=KewA ! H(q, ;) exp[iw(t - ;)] di. (38) 
0 

Using the formula in Appendix B, one may evaluate 
(38) as 

P = k, exp[(q* - l)t/4 + (q + l)a/2] 

x erfc[W)JT + W2)lJ~l 

+ Rr k, exp[iwT + (1-t 2b)a/2] erfc[bdT + (9/2)/Jt] 

+ Re k, exp[ioz + (1 - 2b)q/2] erfc[(q/2)/JT- b,,/t], 

(39) 

where the constants k,, k, and k, are given in 

Appendix B and 

b* = $ + io. (40) 8. 

At any finite q, most of the terms in (39) drop away as 
time increases, leaving 

H = Re 2k, exp[iwT + (1 - 2b) v/2], 

T-+ large. 
(41) 

From (40) one may show that the real part of b is 
greater than one half. Thus (41) represents a long time 
solution for 0, which is periodic in space and time, and 
decays in amplitude downstream. 

SUMMARY 

Repeated application of integral transforms and 
solution of an integral equation yield a general so- 
lution for l-dim. transport from a transfer dependent, 
spatially concentrated source. Using the solution to 
the case of constant source intensity, one achieves a 
general expression for the solution when the source 
intensity varies arbitrarily in time. Explicit expressions 
are derived for the solution of the fundamental case 
when the source intensity varies sinusoidally. In both 
this and the constant source case, quite simple ex- 
pressions result for the long time solution. From the 
solution to the sinusoidally forced case, one may 
construct a solution for any specifiable time history of 
source intensity, using its Fourier series. 
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APPENDIX A 

In this Appendix, equation (25) is subjected to various 
manipulations and a Laplace transform, leaving an equation 
in the transformed dependent variable which is devoid of any 
differential or integral operators. This means ultimately that a 
double (Fourier-Laplace) transform must be inverted to 
obtain the final expressions for 4 and hence 8. The particulars 
of the inversion process are also displayed below. 

Al. Additional transformurions 

Laplace transformation of equation (25) with respect to r 
produces an equation without the integral over T. To this end 
one may rewrite (25) as 

B(B. T) = -4 .I:: exp[-/?(7-_)]h(<)di +j(~), (A.l) 

in which 

f(s) FE + [exp(r/4) - exp( - /? 7)] (A.3) 

A + P’ 
4 

The Laplace transform with respect to r of any function g(1) 
is defined as 

L,kd = I’ g(i)exp(-si)d?. (A.4) 
0 

Using the convolution rule on (A.l) [23, p. 323, No. 71 yields 
an expression for H, the Laplace transform of 6 

L,+$) = H(fl, s) 

= - qL, (exp( - P*T)) L,[h(r)) + L,[fl. (A.5) 

Using the definition of h(r) (A.2). one may express its Laplace 
transform in terms of n, in integral form: 

1 c, c, 

=-! iI 277 fi=_, ,r=” 

1 n, 

=-J 2n _, 
n@, S) dli. 

Substitution of (A.6) into (A.5), and the direct evaluation of 

L,(exp(-/? r)) and L,{f; through the definition (A.4) 
leads to an integral equation in II@, s) containing only a 
single integral : 

n(fis) = -q L ” 
s+B22n ~, J 

n@. s)dfi 

(A.7) 

From (A.7) one may obtain an equation in H(b,s)devoid of 
all integraldilferential operators by using a method sugges- 
ted in general form by Hildebrand [24, p. 246 ff.], and applied 
as below. 

To begin, denote the integral in (A.7) as B, that is, 

B(s) = (A.81 

so that (A.7) may be rewritten as 

n(p, S) = -4 
1 

~ B(s) + __ __ - ~ 
2n s+/? 

(A.9) 

Now one may solve for B(s), using the definition (A.8), by 
integrating (A.9) with respect to b. When the result is 
substituted back into (A.9), the desired solution for II@, s) is 
obtained. Equation (A.9) becomes 

(A.lO) 

Using available evaluations of the integrals in (A.lO) 125, p. 
771, [26, p. 289, formula 3.223.11 one obtains 

B(s) = 
Y&C 77 

(A.1 1) 

Substituting (A.ll) into (A.9) provides the result 

-(Y/2) YOS, w, s, = Lri4J = (s+p) s _ ! (q,2+Js) 

i J 4 
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$5 = 4~,,ev[W) - h/2)1 (A.18) 

The last term on the right-hand side of (A.12) may be 
inverse-Laplace transformed to provide [23, p. 3241 

(A.19) 

where the terms on the right hand sides of (A. 12a) and (A. 12b) 
correspond respectively, and Equation (A.19) may be inverse-Fourier transformed r27. 

6 = 8, + m, + 6,. (A.13) 
3.15.11 as 

. ._ ._ 

The variable n(jI, s) is completely and explicitly specified 
by equation (A.12). It represents the Laplace transform of the 
Fourier transform of 4. When those transforms are inverted, 
as below, solution for 0 may be expressed explicitly, via (14). 

A.2. Inverse transformarion The dependent variable 4 is given by the sum of equations 

By virtue of the linearity of the back-transformation 
(A.16), (A.18) and (A.20), that is 

operations, the inverse transforms may be applied term by 
term to equation (A.12). Also, either inversion may be 
performed first on each term, according to convenience. For 

4 = $1 + #J* + 43. (A.21) 

the first term on the right-hand side of (A.12), it simplifies When one performs this summation, using (14) to express 

matters if one inverts the Fourier transform first: things in terms of 0, and employs additional straightforward 

(- 42) 44 exp( - $7) 
rearrangements and simplifications of expressions, the result 

dfl 
is 

wl, 7) = &exp[(q+ I )~/2 + (q’- l)r/4] 
1-q* 

-q2kexp(-vJs) = 

i i 

(A.14) 

4 s -; Js(q/2+ Js) 

For evaluating the integral in (A.14) [26, p. 406, formula 
3.723.21 it must be assumed that ‘1 >O. Thus the solution to be 
obtained is applicable downstream if V is taken as positive, 
and upstream if a negative V is used. 

The Laplace transform remaining in (A.14) may be inverted 
as [23, formula 87, p. 3291 

40 
- 2 erfc 

2(q+l) 

APPENDIX B 

exp[(q/2)rl+ 5/41 exp($ - 1) f/4 
All the integrals in (38) may be evaluated using the formula 

[27, 2.6.41: 

x erfc (q/Z) Ji + (‘112)di 
I JT I 

exp[(a2 - b’) .x] erfc[aJx + cJx] d.w 
(A.15) 

When the integral in (A.15) with respect to i is evaluated [27, 
exp(a’ - b*)x 

= 
2.6.41 the result is a’-b2 

erfc[a Jx + c/ Jx] 

6,(% T) = q*es, 
i 
exp(q~‘~~2q2r’4’ erfc [(q/L?)Js + (~7/2)/ JT] - exp$$2(lbIJb’c (1 + a/b) erfc[b Jx + c/ Jx] 

+ ew(vP + T/4) 
erfc 

i 

i JT + (+)/JT + 

I 

ev-v/2+ ~14) + exp[ - 2(a + b)c] 

Q-1) 2(4+ 1) 2(a2 - b2) 
(l-u/b)erfc[bJx-c/Jx] + C,.(B.l) 

where C, is a constant of integration. In each integral bZ 

x erfc 
I 

iJ~-(q/2)/Jr][ - q2es’e~~~-“2), qfl. 
corresponds to the complex quantity l/4 + io. 

When the integrations are carried out, yielding the result in 

(A.16) 
(39), the constants which appear are 

To treat the second term on the right hand side in (A.12), it k, = 
- q%uA 

is best to invert the Laplace transform first. The result is [23, 4[(qz- 1)*/16+tuZ]’ 
03.2) 

p. 3241 
k = qZMl+q/2b) iAq I+1126 1 - 1/2b 

Ye,, exp(r/4) 
2 +~----_--_ ( 

6*= 

/?z+; 

(A.17) 
2(q* - 1) (q2/4- b2) 4 I l-4 4+1 1 

(B.3) 

One may inverse-Fourier transform (A.17) [26, p. 406, 
formula 3.723.21 to obtain 

k = qZAw(l--q/2b) 

3 2(qz - 1) (qz/4 - b’) - 

iqA( 1 + l/Zb) + iqA( 1 - l/Zb) 

4(q+l) 4(1--q) 
(B.4) 
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TRANSFERT UNIDIRECTIONNEL A PARTIR DUNE SOURCE 
THERMIQUE TRES CONCENTREE 

R&nnC--On considtke les situations de transfert de chaleur et de masse pour lesyuelles I’intensitd d’une 
source ou d’un puits peut-Sire exprimb en fonction d’un dlbit inconnu. Ceci se rencontre quand le transfer1 

entre la source et le milieu est gouvernC par une valeur diff&entielle d’une variable indtpendante qui est 

inconnue parce que la valeur de rkponse du milieu est inconnue. Des comolexitks mathimatioues 

apparaissent quand en plus la sour~x est spatialement trPs concent&, par rapport a la dimension du 

domaine. Une equation de convection unidirectionnelle valable pour ce cas peut &tre rt5solue par I’usage 
simultand de la transformation de Fourier et de son inverse dans la mime equation, en mime temps qu’avec 
une autre transformation et une autre manipulation. A partir de la solution obtenue dans le cas d’une 
intensitt constante de source, on peut construire une expression g&&ale de la solution lorsque l’intensiti 
varie avec le temps. Une solution explicite est obtenue pour le cas fondamental d’une intensitk de source 

fonction sinuso‘idale du temps. 

EINDIMENSIONALER TRANSPORT VON EINER HOCHKONZENTRIERTEN WbiRME- 
BZW. STRC)MUNGSQUELLE 

Zusam~nfassun~ -- Sowohl bei der W~rme~bertragung als such beim Stoffaustausch treten Situationen 
auf. in denen eine als Quelle oder Senke betrachtete GrdBe nur durch eine un~kannte Ergiebigkeit 
ausgedriickt werden kann. Dieses ist der Fall, wenn die den Transportvorgang zwischen der Quelle und dem 
Medium bestimmende Differenz einer abhgngigen Variablen unbekannt ist, weil der zugehtirige Wert des 
Mediums nicht bekannt ist. Es ergeben sich weitere mathematische Komplizierungen, wenn die Quelle 
zus&tzlich noch stark konzentriert ist im Verhiiltnis zur Griilje des Gesamt~reiches. Eine eindimension~le 
Konvektions-.~iffusions-Transportgleichung, die diesem Fall entspricht, kann durch gleichzeitige Anwen- 
dung der Fourier-Transformation und ihrer Inversen in derselben Gleichung und durch weitere 
Transformation und Manipulation gelijst werden. Aus der LBsung, die man fiir den Fall konstanter 
Quellenergiebigkeit erhllt, kann man einen allgemeinen LBsungsausdruck fiir zeitlich beliebig veranderliche 
Quellenergiebi~keit aufbauen. Man erhglt explizite Ausdriicke fiir die Liisung des Fundament~~lfalleszeitli~~~ 

sinusfiirmig ver~~lderlicher QuelIenergieb~gke~t. 

OAHOMEPtfbIlsi I-IEPEHOC OT CMJlbHO CKOHUEHTPHPOBAHHOI-0 MCTOYHMKA 

AmioTawR - B cnyrae KBK Tenno-, mix u Macconepetioca ~103miKa~~r ccrryauea. Koraa HCTOYHHK u_n~ 

CTOK XapaKTepWyeTCfl MOUIHOCTblO. KOTOpaSl MOXeT 6bITb BblpSKeHil YePe3 HCKOMyHt CKOpOCTb 

nepeHoca 0T YICTOYH~~K~ 8 none no-fora. 3TO nponcxoner a ,roM cnyrae. Korfia nepenoc k.feEny 

WCTO’IHBKOM u cpenoii B03HAXaeT noa EeiicrBHeM pa?HOCT&i 3naYeHn~ 3aBACN.kfoG IIepeMeHHoir, 

rrBnRMLueiica HeWSBeCTHOt BeRkiWHOii B pearepysomeii cpene. MaTeMaTMsecKoe OnBcaHHe oCO6eHHO 

3aTp)‘nHeHO B TOM CJIyWe. KOrila B DOnOJIHeHHe KO BCeMy ItCToYHNK IIBnReTCfl CWlbHO CKOHueHTpnpO- 

BannblM 3 npocrparicree (no oTno!.ueHmo K pa3MepaM pa~cMaTpnaae~0~ 06srac-rli). Ilpmonnoe ~151 
3TOrO C,~)‘WW O~HOMepHOe ypaBHeHk,e, O~~CbIBa~~ee KOHBeKT~BHb~~ M ~~~~y?~OHHbl~ IX~HOC. MOXCT 

6bITb FmeHO nyTeM UCnOJIb30BaHlill n~O6pa30BaHHR @ypbe Knil DpyrOrO n~O6pa?OBaHt,X. t43 

&YZmeHklR, nOJy’leHHOrO LUIR HCTOYHllKa nOCTOnHHOi? MOUHOCTH, MOKHO BblBeCTM 06lUee BbtpaxeHHe 

,W,fl CJIyWR ACTO’IHMKB, MOUlHOCTb KOTOpOrO npOn3BOJIbHO H3MeHlleTCII BO BPeMeHI(. fIO,ly~eHbI 

BblpameHHR 8 RRHOM BAfie fiJia HCTOYHAKa C MOIlJHOCTbK), CHHj’COR&%lbHO 3aBHCNL&i OT aj,eMeHH. 


